Elevated ground-level O3 negatively influences paddy methanogenic archaeal community

نویسندگان

  • Youzhi Feng
  • Xiangui Lin
  • Yongchang Yu
  • Huayong Zhang
  • Haiyan Chu
  • Jianguo Zhu
چکیده

The current knowledge regarding the effect of global climate change on rice-paddy methane (CH4) emissions is incomplete, partly because information is limited concerning the mechanism of the microbial response to elevated ground-level ozone (O3). A field experiment was conducted in the China Ozone Free-Air Concentration Enrichment facility in a rice-wheat rotation system to investigate the responses of methanogenic archaeal communities to elevated ground-level O3 by culture-independent and -reliant approaches. We found that elevated ground-level O3 inhibited methanogenic activity and influenced the composition of paddy methanogenic communities, reducing the abundance and diversity of paddy methanogens by adversely affecting dominant groups, such as aceticlastic Methanosaeta, especially at the rice tillering stage. Our results indicated that continuously elevated ground-level O3 would negatively influence paddy methanogenic archaeal communities and its critical ecological function. These findings will contribute to a comprehensive understanding of the responses and feedbacks of paddy ecosystems to global climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil

Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGG...

متن کامل

Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China

Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distr...

متن کامل

Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil

Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from ...

متن کامل

Response of Methanogenic Microbial Communities to Desiccation Stress in Flooded and Rain-Fed Paddy Soil from Thailand

Rice paddies in central Thailand are flooded either by irrigation (irrigated rice) or by rain (rain-fed rice). The paddy soils and their microbial communities thus experience permanent or arbitrary submergence, respectively. Since methane production depends on anaerobic conditions, we hypothesized that structure and function of the methanogenic microbial communities are different in irrigated a...

متن کامل

Stratification of Diversity and Activity of Methanogenic and Methanotrophic Microorganisms in a Nitrogen-Fertilized Italian Paddy Soil

Paddy fields are important ecosystems, as rice is the primary food source for about half of the world's population. Paddy fields are impacted by nitrogen fertilization and are a major anthropogenic source of methane. Microbial diversity and methane metabolism were investigated in the upper 60 cm of a paddy soil by qPCR, 16S rRNA gene amplicon sequencing and anoxic 13C-CH4 turnover with a suite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013